Format

Send to

Choose Destination
Spine J. 2007 Sep-Oct;7(5):583-95. Epub 2007 Jan 10.

Response of lumbar paraspinal muscles spindles is greater to spinal manipulative loading compared with slower loading under length control.

Author information

1
Palmer Center for Chiropractic Research, 741 Brady St., Davenport, IA 52803-5209, USA. Pickar_j@palmer.edu

Abstract

BACKGROUND CONTEXT:

Spinal manipulation (SM) is a form of manual therapy used clinically to treat patients with low back and neck pain. The most common form of this maneuver is characterized as a high-velocity (duration <150 ms), low-amplitude (segmental translation <2 mm, rotation <4 degrees , and applied force 220-889 N) impulse thrust (high-velocity, low-amplitude spinal manipulation [HVLA-SM]). Clinical skill in applying an HVLA-SM lies in the practitioner's ability to control the duration and magnitude of the load (ie, the rate of loading), the direction in which the load is applied, and the contact point at which the load is applied. Control over its mechanical delivery is presumably related to its clinical effects. Biomechanical changes evoked by an HVLA-SM are thought to have physiological consequences caused, at least in part, by changes in sensory signaling from paraspinal tissues.

PURPOSE:

If activation of afferent pathways does contribute to the effects of an HVLA-SM, it seems reasonable to anticipate that neural discharge might increase or decrease in a nonlinear fashion as the thrust duration approaches a threshold value. We hypothesized that the relationship between the duration of an impulsive thrust to a vertebra and paraspinal muscle spindle discharge would be nonlinear with an inflection near the duration of an HVLA-SM delivered clinically (<150 ms). In addition, we anticipated that muscle spindle discharge would be more sensitive to larger amplitude thrusts.

STUDY DESIGN/SETTING:

A neurophysiological study of spinal manipulation using the lumbar spine of a feline model.

METHODS:

Impulse thrusts (duration: 12.5, 25, 50, 100, 200, and 400 ms; amplitude 1 or 2 mm posterior to anterior) were applied to the spinous process of the L6 vertebra of deeply anesthetized cats while recording single unit activity from dorsal root filaments of muscle spindle afferents innervating the lumbar paraspinal muscles. A feedback motor was used in displacement control mode to deliver the impulse thrusts. The motor's drive arm was securely attached to the L6 spinous process via a forceps.

RESULTS:

As thrust duration became shorter, the discharge of the lumbar paraspinal muscle spindles increased in a curvilinear fashion. A concave-up inflection occurred near the 100-ms duration eliciting both a higher frequency discharge compared with the longer durations and a substantially faster rate of change as thrust duration was shortened. This pattern was evident in paraspinal afferents with receptive fields both close and far from the midline. Paradoxically, spindle afferents were almost twice as sensitive to the 1-mm compared with the 2-mm amplitude thrust (6.2 vs. 3.3 spikes/s/mm/s). This latter finding may be related to the small versus large signal range properties of muscle spindles.

CONCLUSIONS:

The results indicate that the duration and amplitude of a spinal manipulation elicit a pattern of discharge from paraspinal muscle spindles different from slower mechanical inputs. Clinically, these parameters may be important determinants of an HVLA-SM's therapeutic benefit.

PMID:
17905321
PMCID:
PMC2075482
DOI:
10.1016/j.spinee.2006.10.006
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center