Format

Send to

Choose Destination
J Pathol. 2007 Nov;213(3):257-65.

Microsatellite unstable colorectal cancer cell lines with truncating TGFbetaRII mutations remain sensitive to endogenous TGFbeta.

Author information

1
Department of Pathology, McGill University, Montréal, Québec H3A 2B4, Canada. kristi.baker@mcgill.ca

Abstract

Disruptions to the TGFbeta signalling pathway have been implicated in most human adenocarcinomas. As cancers progress, many acquire resistance to the growth-suppressing properties of TGFbeta while retaining sensitivity to its tumour-promoting effects. Microsatellite unstable colorectal cancers (MSI-H CRCs) possess truncating mutations in the type II TGFbeta receptor (TGFbetaRII) gene that have been assumed to render these tumours insensitive to TGFbeta. However, numerous reports of TGFbetaRII bypass exist and this study was thus undertaken in order to clarify the true extent of TGFbeta sensitivity in MSI-H CRCs. Using stimulation with exogenous TGFbeta, we demonstrated that, while MSI-H CRCs are capable of binding soluble TGFbeta, two out of three cell lines examined remain refractory to its signalling effects. In contrast, use of a specific inhibitor of the type I TGFbeta receptor (TGFbetaRI) revealed that all remain sensitive to signalling by endogenously produced TGFbeta. Specifically, autocrine signalling via TGFbetaRI mediates constitutive activation of Smad2 as well as repression of Erk signalling. Real-time PCR confirmed that these effects are sufficient to affect the expression level of various TGFbeta-modulated genes. An invasion assay revealed that autocrine TGFbetaRI signalling also promotes the invasion capacity of MSI-H CRCs to an extent similar to that seen in their non-MSI-H counterparts. Independent TGFbetaRI signalling, however, has no effect on the rate of proliferation of MSI-H CRC cells. Together, these results demonstrate that MSI-H CRC cell lines are not completely refractory to TGFbeta, despite lacking functional TGFbetaRII. In addition to clarifying the true consequences of natural TGFbetaRII loss and the independent function of TGFbetaRI, our results highlight the selective nature of TGFbeta resistance developed by cancers.

PMID:
17893910
DOI:
10.1002/path.2235
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center