Format

Send to

Choose Destination
Food Chem Toxicol. 2007 Dec;45(12):2381-9. Epub 2007 Jun 16.

Arsenic species and leaching characters in tea (Camellia sinensis).

Author information

1
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 100085 Beijing, PR China.

Abstract

Tea is one of the most popular non-alcoholic beverages consumed in the world. Arsenic including species totalling to 47 Chinese tea samples from 18 tea-producing provinces in China were analyzed. By simulating the infusion process, leaching characters, effects of extraction time and temperature on arsenic extraction were investigated. Total amount of arsenic in tea leaf samples was in the range below the detection limit to 4.81 microg/g. Leaching of arsenic was strongly affected by extraction time and temperature. Because arsenic leaching ability by hot water was low and most of the arsenic was left in tea leaf residues after infusion, the concentration of arsenic in tea infusion was low even when some original tea leaf samples contained high level of arsenic. The major species in tea infusion were inorganic arsenic form (arsenite As(III) and arsenate As(V)). Compared with the amount of arsenic in infusion, more organic arsenic species were found in the original tea leaf samples. The contents of extractable inorganic arsenic in tea leaf samples were in the range below the detection limit to 226 ng/g. Considering ingestion dose and assuming one person (60 kg body weight) consumes 10 g of Chinese tea per day, the maximum inorganic arsenic contribution from tea infusion is 2.26 microg, which is equal to 0.038 microg/kg/d excluding water contribution. This value only accounts for 1.8% of provisional tolerable weekly intake (PTWI) (2.1 microg/kg/d) recommended by the Food and Agriculture Organization/World Health Organization [FAO/WHO, 1989. Evaluation of certain food additives and contaminants. Thirty-third Report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series No. 776, Geneva, World Health Organization].

PMID:
17892910
DOI:
10.1016/j.fct.2007.06.015
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center