Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS Genet. 2007 Sep;3(9):1661-71. Epub 2007 Aug 1.

In vivo validation of a computationally predicted conserved Ath5 target gene set.

Author information

1
Developmental Biology Programme, European Molecular Biology Laboratory, Heidelberg, Heidelberg, Germany.

Abstract

So far, the computational identification of transcription factor binding sites is hampered by the complexity of vertebrate genomes. Here we present an in silico procedure to predict target sites of a transcription factor in complex genomes using its binding site. In a first step sequence, comparison of closely related genomes identifies the binding sites in conserved cis-regulatory regions (phylogenetic footprinting). Subsequently, more remote genomes are introduced into the comparison to identify highly conserved and therefore putatively functional binding sites (phylogenetic filtering). When applied to the binding site of atonal homolog 5 (Ath5 or ATOH7), this procedure efficiently filters evolutionarily conserved binding sites out of more than 300,000 instances in a vertebrate genome. We validate a selection of the linked target genes by showing coexpression with and transcriptional regulation by Ath5. Finally, chromatin immunoprecipitation demonstrates the occupancy of the target gene promoters by Ath5. Thus, our procedure, applied to whole genomes, is a fast and predictive tool to in silico filter the target genes of a given transcription factor with defined binding site.

PMID:
17892326
PMCID:
PMC1988851
DOI:
10.1371/journal.pgen.0030159
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center