Send to

Choose Destination
Chem Cent J. 2007 Mar 13;1:7.

PocketPicker: analysis of ligand binding-sites with shape descriptors.

Author information

Johann Wolfgang Goethe-Universität, Beilstein Endowed Chair for Cheminformatics, Institut für Organische Chemie und Chemische Biologie, Frankfurt am Main, Germany.



Identification and evaluation of surface binding-pockets and occluded cavities are initial steps in protein structure-based drug design. Characterizing the active site's shape as well as the distribution of surrounding residues plays an important role for a variety of applications such as automated ligand docking or in situ modeling. Comparing the shape similarity of binding site geometries of related proteins provides further insights into the mechanisms of ligand binding.


We present PocketPicker, an automated grid-based technique for the prediction of protein binding pockets that specifies the shape of a potential binding-site with regard to its buriedness. The method was applied to a representative set of protein-ligand complexes and their corresponding apo-protein structures to evaluate the quality of binding-site predictions. The performance of the pocket detection routine was compared to results achieved with the existing methods CAST, LIGSITE, LIGSITE(cs), PASS and SURFNET. Success rates PocketPicker were comparable to those of LIGSITE(cs) and outperformed the other tools. We introduce a descriptor that translates the arrangement of grid points delineating a detected binding-site into a correlation vector. We show that this shape descriptor is suited for comparative analyses of similar binding-site geometry by examining induced-fit phenomena in aldose reductase. This new method uses information derived from calculations of the buriedness of potential binding-sites.


The pocket prediction routine of PocketPicker is a useful tool for identification of potential protein binding-pockets. It produces a convenient representation of binding-site shapes including an intuitive description of their accessibility. The shape-descriptor for automated classification of binding-site geometries can be used as an additional tool complementing elaborate manual inspections.

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center