Send to

Choose Destination
J Biomed Opt. 2007 Jul-Aug;12(4):041212.

Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography.

Author information

University of Pittsburgh School of Medicine, Department of Ophthalmology, Ophthalmology and Visual Sciences Research Center, UPMC Eye Center, Eye and Ear Institute, Pittsburgh, Pennsylvania 15213, USA.


We use Fourier domain optical coherence tomography (OCT) data to assess retinal blood oxygen saturation. Three-dimensional disk-centered retinal tissue volumes were assessed in 17 normal healthy subjects. After removing DC and low-frequency a-scan components, an OCT fundus image was created by integrating total reflectance into a single reflectance value. Thirty fringe patterns were sampled; 10 each from the edge of an artery, adjacent tissue, and the edge of a vein, respectively. A-scans were recalculated, zeroing the DC term in the power spectrum, and used for analysis. Optical density ratios (ODRs) were calculated as ODR(Art)=ln(Tissue(855)Art(855))ln(Tissue(805)Art(805)) and ODR(Vein)=ln(Tissue(855)Vein(855))ln(Tissue(805)Vein(805)) with Tissue, Art, and Vein representing total a-scan reflectance at the 805- or 855-nm centered bandwidth. Arterial and venous ODRs were compared by the Wilcoxon signed rank test. Arterial ODRs were significantly greater than venous ODRs (1.007+/-2.611 and -1.434+/-4.310, respectively; p=0.0217) (mean+/-standard deviation). A difference between arterial and venous blood saturation was detected. This suggests that retinal oximetry may possibly be added as a metabolic measurement in structural imaging devices.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center