Send to

Choose Destination
See comment in PubMed Commons below
J Chem Phys. 2007 Sep 14;127(10):104311.

Energy transfer of highly vibrationally excited naphthalene. I. Translational collision energy dependence.

Author information

Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 10617, Taiwan.


Energy transfer between highly vibrationally excited naphthalene and Kr atom in a series of translational collision energies (108-847 cm(-1)) was studied separately using a crossed-beam apparatus along with time-sliced velocity map ion imaging techniques. Highly vibrationally excited naphthalene in the triplet state (vibrational energy: 16,194 cm(-1); electronic energy: 21,400 cm(-1)) was formed via the rapid intersystem crossing of naphthalene initially excited to the S(2) state by 266 nm photons. The collisional energy transfer probability density functions were measured directly from the scattering results of highly vibrationally excited naphthalene. At low collision energies a short-lived naphthalene-Kr complex was observed, resulting in small amounts of translational to vibrational-rotational (T-->VR) energy transfer. The complex formation probability decreases as the collision energy increases. T-->VR energy transfer was found to be quite efficient at all collision energies. In some instances, nearly all of the translational energy is transferred to vibrational-rotational energy. On the other hand, only a small fraction of vibrational energy is converted to translational energy. The translational energy gained from vibrational energy extend to large energy transfer (up to 3000 cm(-1)) as the collision energy increases to 847 cm(-1). Substantial amounts of large V-->T energy transfer were observed in the forward and backward directions at large collision energies.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Institute of Physics
    Loading ...
    Support Center