Three greenhouse pot experiments were conducted with four different nitrogen (N) treatments (80, 160, 240, and 320 kg ha (-1)) in combination with three sulfur (S) treatments (10, 20, and 60 kg ha (-1)) to study the effects of combined N and S supply on glucosinolate concentration and composition in turnip roots. Total glucosinolate concentration varied widely from 9.7 (N 320S 10) to 91.6 (N 160S 60) mg (100 g) (-1) root fresh weight (FW) and individual glucosinolate concentrations were increased with increasing S supply regardless of the N treatment, whereas enhanced N supply (160 - 320 N ha (-1)) at the high S level (60 kg ha (-1)) did not affect total glucosinolate concentration. In contrast, assumingly attributed to the individual glucosinolate biosynthesis concentration of N-containing tryptophan-derived indole glucosinolate was highest with increased N supply, whereas S-containing methionine-derived aromatic and aliphatic glucosinolates decreased with increasing N supply combined at low S level (10-20 kg ha (-1)).