Send to

Choose Destination
J Chem Phys. 2007 Sep 7;127(9):094309.

Comparing electronic structure predictions for the ground state dissociation of vinoxy radicals.

Author information

The James Franck Institute and The Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.


This paper reports a series of electronic structure calculations performed on the dissociation pathways of the vinoxy radical (CH(2)CHO). We use coupled-cluster with single, double, and perturbative triple excitations (CCSD(T)), complete active space self-consistent field (CASSCF), multireference configuration interaction (MRCI), and MRCI with the Davidson correction (MRCI+Q) to calculate the barrier heights of the two unimolecular dissociation pathways of this radical. The effect of state averaging on the barrier heights is investigated at the CASSCF, MRCI, and MRCI+Q levels. The change in mixing angle along the reaction path is calculated as a measure of derivative coupling and found to be insufficient to suggest nonadiabatic recrossing. We also present a new analysis of previous experimental data on the unimolecular dissociation of ground state vinoxy. In particular, an error in the internal energy distribution of vinoxy radicals reported in a previous paper is corrected and a new analysis of the experimental sensitivity to the onset energy (barrier height) for the isomerization reaction is given. Combining these studies, a final "worst case" analysis of the product branching ratio is given and a statistical model using each of the calculated transition states is found to be unable to correctly reproduce the experimental data.


Supplemental Content

Full text links

Icon for American Institute of Physics
Loading ...
Support Center