Format

Send to

Choose Destination
J Biol Chem. 2007 Oct 26;282(43):31131-46. Epub 2007 Sep 6.

Lipopolysaccharide-mediated interferon regulatory factor activation involves TBK1-IKKepsilon-dependent Lys(63)-linked polyubiquitination and phosphorylation of TANK/I-TRAF.

Author information

1
Interdisciplinary Cluster for Applied Genoproteomics, Medical Chemistry, and Virology/Immunology units, University of Liege, Sart-Tilman, 4000 Li├Ęge, Belgium.

Abstract

Type I interferon gene induction relies on IKK-related kinase TBK1 and IKKepsilon-mediated phosphorylations of IRF3/7 through the Toll-like receptor-dependent signaling pathways. The scaffold proteins that assemble these kinase complexes are poorly characterized. We show here that TANK/ITRAF is required for the TBK1- and IKKepsilon-mediated IRF3/7 phosphorylations through some Toll-like receptor-dependent pathways and is part of a TRAF3-containing complex. Moreover, TANK is dispensable for the early phase of double-stranded RNA-mediated IRF3 phosphorylation. Interestingly, TANK is heavily phosphorylated by TBK1-IKKepsilon upon lipopolysaccharide stimulation and is also subject to lipopolysaccharide- and TBK1-IKKepsilon-mediated Lys(63)-linked polyubiquitination, a mechanism that does not require TBK1-IKKepsilon kinase activity. Thus, we have identified TANK as a scaffold protein that assembles some but not all IRF3/7-phosphorylating TBK1-IKKepsilon complexes and demonstrated that these kinases possess two functions, namely the phosphorylation of both IRF3/7 and TANK as well as the recruitment of an E3 ligase for Lys(63)-linked polyubiquitination of their scaffold protein, TANK.

PMID:
17823124
DOI:
10.1074/jbc.M701690200
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center