Format

Send to

Choose Destination
See comment in PubMed Commons below
Vis Neurosci. 2007 May-Jun;24(3):437-43.

Cellular correlates of proneural and Notch-delta gene expression in the regenerating zebrafish retina.

Author information

  • 1Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York 13210, USA.

Abstract

Fish can regenerate retinal neurons following ocular injury. Evidence is mounting that astrocytic glia function as inducible, regenerative stem cells in this process, but the underlying molecular events that enable neuronal regeneration are comparatively unclear. In the current study gene array, quantitative real-time PCR, in situ hybridization, and immunohistochemical approaches were used to identify, in the damaged retina of adult zebrafish, correlations between transcriptional events and entry into the cell cycle by Müller cells, a type of astrocytic cell present in all vertebrate retinas that is a candidate 'stem cell' of regenerated neurons. A proneural gene (achaete-scute homolog 1a, ash1a) and neurogenic components of the Notch signaling pathway, including notch3 and deltaA, were implicated. An injury-induced, enhanced expression of ash1a was observed in Müller cells, which is hypothesized to contribute to the transition of these cells, or their cellular progeny, into a notch3-expressing, regenerative progenitor. A model of vertebrate retinal repair is suggested in which damage-induced expression of proneural genes, plus canonical Notch-Delta signaling, could contribute to retinal stem cell promotion and subsequent regenerative neurogenesis.

PMID:
17822581
DOI:
10.1017/S0952523807070496
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Cambridge University Press
    Loading ...
    Support Center