Send to

Choose Destination
See comment in PubMed Commons below
Biophys J. 1991 Dec;60(6):1337-49.

Raman spectroscopy of filamentous bacteriophage Ff (fd, M13, f1) incorporating specifically-deuterated alanine and tryptophan side chains. Assignments and structural interpretation.

Author information

Division of Cell Biology and Biophysics, School of Basic Life Sciences, University of Missouri, Kansas City, Missouri 64110.


Structural interpretation of the Raman spectra of filamentous bacteriophages is dependent upon reliable assignments for the numerous Raman vibrational bands contributed from coat protein and packaged DNA of the virion. To establish unambiguous assignments and facilitate structural conclusions derived from them, we have initiated a systematic study of filamentous bacteriophage Ff (fd, f1, M13) incorporating protein subunits with specifically deuterated amino-acid side chains. Here, we report and interpret the Raman spectra of fd virions which incorporate: (a) a single deuterio-tryptophan residue per coat protomer [fd(Wd5)], (b) ten deuterio-alanines per protomer [fd(10Ad3)], and (c) both deuterio-tryptophan and deuterio-alanine [fd(Wd5 + 10Ad3)]. The unambiguous assignment of coat protein Raman bands in normal and deuterated isotopomers of fd establishes the validity of earlier empirical assignments of many key Raman markers, including those of packaged ssDNA (Thomas et al., 1988). Present results confirm that deoxyguanosine residues of the packaged ssDNA molecule depart from the usual C2'-endo/anti conformation characteristic of protein-free DNA in aqueous solution, although C2'-endo/anti conformers of thymidine are not excluded by the data. The combined results obtained here on normal fd, and on fd incorporating deuterio-tryptophan [fd(Wd5) and fd(Wd5 + 10Ad3)], show also that the microenvironment of the single tryptophan residue per coat protomer (W26) can be clearly deduced as follows: (a) The indole 1-NH donor group of each protomer in fd forms a moderately strong hydrogen bond, most likely to a hydroxyl oxygen acceptor. (b) The planar indole ring exists in a hydrophilic environment. (c) The torsion angle describing the orientation of the indole ring (C3-C2 linkage) with respect to the side-chain (C alpha-C beta bond) is unusually large, i.e., magnitude of X2,1 approximately 120 degrees. With respect to alanine isotopomers, the present results show that alanine residues, and possibly other methyl-containing side chains, are significant contributors to the fd Raman spectrum. The present study provides new information on protomer side chains of fd and demonstrates a Raman methodology which should be generally useful for investigating single-site interactions and macromolecular conformations in other nucleoprotein assemblies.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center