Send to

Choose Destination
Neurol Res. 2008 Feb;30(1):85-91.

Effects of WIN55,212-2 on voltage-gated sodium channels in trigeminal ganglion neurons of rats.

Author information

Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.



This study was carried out to investigate the effects of WIN55,212-2, a potential cannabinoid receptor agonist, on voltage-gated sodium currents I(Na) in cultured trigeminal ganglion neurons of rats, and to investigate whether the anti-nociceptive effects of cannabinoid receptor subtype 1 (CB1) were produced through its modulation on I(Na).


Whole cell patch clamp techniques were used to record I(Na) before and after WIN55,212-2 was perfused in cultured trigeminal ganglion neurons of rats.


WIN55,212-2 (0.01 micromol/l) could enhance I(Na) slightly by 11.5 +/- 4.7% (n=7, p<0.05), and this effect could not be blocked by AM251, the CB1 receptor antagonist. However, WIN55,212-2 could inhibit I(Na) in concentration dependent manner at concentrations from 0.1 to 100 micromol/l. The inhibitory rates were 17.4 +/- 6.0, 22.5 +/- 7.8, 43.9 +/- 9.4 and 73.9 +/- 6.7% respectively by 0.1, 1, 10, 100 micromol/l WIN55,212-2, and the EC(50) was 17.8 micromol/l (n=7, p<0.05 or p<0.01). This inhibitory effect could be blocked partly by 1 micromol/l AM251 (n=7, p<0.05). WIN55,212-2 (0.01 micromol/l) shifted the active curve of I(Na) leftward slightly (n=7, p<0.05), but had no effect on its stable inactive curve (n=7, p>0.05). WIN55,212-2 (10 micromol/l) did not affect the active and stable inactive curves of I(Na) (n=7, p>0.05).


WIN55,212-2 had bidirectional (two phases) effects on I(Na) in trigeminal ganglion neurons. It might act on different receptors, and the CB1 receptor participated in its modulation on I(Na).

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Taylor & Francis
Loading ...
Support Center