Send to

Choose Destination
See comment in PubMed Commons below
Cell Physiol Biochem. 2007;20(5):255-68.

Hydrogen peroxide promotes endothelial dysfunction by stimulating multiple sources of superoxide anion radical production and decreasing nitric oxide bioavailability.

Author information

Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, Australia.


Hydrogen peroxide (H(2)O(2)) is an oxidant implicated in cell signalling and various pathologies, yet relatively little is known about its impact on endothelial cell function. Herein we studied the functional and biochemical changes in aortic vessels and cultured porcine aortic endothelial cells (PAEC) exposed to H(2)O(2). Exposure of aortic rings to 25 or 50 microM, but not 10 microM, H(2)O(2) for 60 min prior to constriction significantly decreased subsequent relaxation in response to acetylcholine (ACh), but not the nitric oxide ((.)NO) donor sodium nitroprusside. Treatment of PAEC with 50 microM H(2)O(2) significantly decreased ACh-induced accumulation of (.)NO, as measured with a (.)NO-selective electrode, yet such treatment increased nitric oxide synthase activity approximately 3-fold, as assessed by conversion of L-arginine to L-citrulline. Decreased (.)NO bioavailability was reflected in decreased cellular cGMP content, associated with increased superoxide anion radical (O(2)(-.)), and overcome by addition of polyethylene glycol superoxide dismutase. Increased cellular O(2)(-.) production was inhibited by allopurinol, diphenyliodonium and rotenone in an additive manner. The results show that exposure of endothelial cells to H(2)O(2) decreases the bioavailability of agonist-induced (.)NO as a result of increased production of O(2)(-.) likely derived from xanthine oxidase, NADPH-oxidase and mitochondria. These processes could contribute to H(2)O(2)-induced vascular dysfunction that may be relevant under conditions of oxidative stress such as inflammation.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for S. Karger AG, Basel, Switzerland
    Loading ...
    Support Center