Send to

Choose Destination
See comment in PubMed Commons below
J Physiol. 2007 Oct 15;584(Pt 2):565-82. Epub 2007 Aug 30.

Differential regulation of action potential firing in adult murine thalamocortical neurons by Kv3.2, Kv1, and SK potassium and N-type calcium channels.

Author information

  • 1Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.


Sensory signals of widely differing dynamic range and intensity are transformed into a common firing rate code by thalamocortical neurons. While a great deal is known about the ionic currents, far less is known about the specific channel subtypes regulating thalamic firing rates. We hypothesized that different K(+) and Ca(2+) channel subtypes control different stimulus-response curve properties. To define the channels, we measured firing rate while pharmacologically or genetically modulating specific channel subtypes. Inhibiting Kv3.2 K(+) channels strongly suppressed maximum firing rate by impairing membrane potential repolarization, while playing no role in the firing response to threshold stimuli. By contrast, inhibiting Kv1 channels with alpha-dendrotoxin or maurotoxin strongly increased firing rates to threshold stimuli by reducing the membrane potential where action potentials fire (V(th)). Inhibiting SK Ca(2+)-activated K(+) channels with apamin robustly increased gain (slope of the stimulus-response curve) and maximum firing rate, with minimum effects on threshold responses. Inhibiting N-type Ca(2+) channels with omega-conotoxin GVIA or omega-conotoxin MVIIC partially mimicked apamin, while inhibiting L-type and P/Q-type Ca(2+) channels had small or no effects. EPSC-like current injections closely mimicked the results from tonic currents. Our results show that Kv3.2, Kv1, SK potassium and N-type calcium channels strongly regulate thalamic relay neuron sensory transmission and that each channel subtype controls a different stimulus-response curve property. Differential regulation of threshold, gain and maximum firing rate may help vary the stimulus-response properties across and within thalamic nuclei, normalize responses to diverse sensory inputs, and underlie sensory perception disorders.

[PubMed - indexed for MEDLINE]
Free PMC Article

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms


Grant Support

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center