Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2007 Oct 19;282(42):31019-27. Epub 2007 Aug 28.

The long form of the leptin receptor regulates STAT5 and ribosomal protein S6 via alternate mechanisms.

Author information

  • 1Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA.

Abstract

The action of leptin via the long form of its receptor (LepRb) is central to the control of body energy homeostasis and neuroendocrine function, but the mechanisms by which LepRb regulates intracellular signaling have remained incompletely understood. Here we demonstrate that leptin stimulates the phosphorylation of STAT5 and ribosomal protein S6 in the hypothalamic arcuate nucleus in mice. In cultured cells, we investigate the mechanisms by which leptin regulates each of these pathways. Our analysis reveals a dominant role for LepRb Tyr(1077) (which we demonstrate to be phosphorylated during receptor activation) and a secondary role for LepRb Tyr(1138) in the acute phosphorylation of STAT5a and STAT5b. Tyr(1138) and STAT3 attenuate STAT5-dependent transcription over the long-term, however. In contrast, Tyr(985) (the LepRb phosphorylation site required for ERK activation) mediates the phosphorylation of the ribosomal S6 kinase (RSK) and S6, as well as cap-dependent translation. Thus, these data demonstrate the phosphorylation of Tyr(1077) on LepRb during receptor activation, substantiate the hypothalamic regulation of STAT5 and S6 by leptin, and define the alternate LepRb signaling pathways that mediate each of these signals and their effects in cultured cells. Dissecting the contributions of these individual pathways to leptin action will be important for our ultimate understanding of the processes that regulate energy balance in vivo.

PMID:
17726024
DOI:
10.1074/jbc.M702838200
[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center