Format

Send to

Choose Destination
See comment in PubMed Commons below
Diabetes. 2007 Dec;56(12):2854-62. Epub 2007 Aug 23.

Calmodulin-binding domain of AS160 regulates contraction- but not insulin-stimulated glucose uptake in skeletal muscle.

Author information

1
Department of Metabolism, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA.

Abstract

OBJECTIVE:

Insulin and contraction increase skeletal muscle glucose uptake through distinct and additive mechanisms. However, recent reports have demonstrated that both signals converge on the Akt substrate of 160 kDa (AS160), a protein that regulates GLUT4 translocation. Although AS160 phosphorylation is believed to be the primary factor affecting its activity, AS160 also possesses a calmodulin-binding domain (CBD). This raises the possibility that contraction-stimulated increases in Ca(2+)/calmodulin could also modulate AS160 function.

RESEARCH DESIGN AND METHODS:

To evaluate the AS160 CBD in skeletal muscle, empty-vector, wild-type, or CBD-mutant AS160 cDNAs were injected into mouse muscles followed by in vivo electroporation. One week later, AS160 was overexpressed by approximately 14-fold over endogenous protein.

RESULTS:

Immunoprecipitates of wild-type and CBD-mutant AS160 were incubated with biotinylated calmodulin in the presence of Ca(2+). Wild-type AS160, but not the CBD-mutant AS160, associated with calmodulin. Next, we measured insulin- and contraction-stimulated glucose uptake in vivo. Compared with empty-vector and wild-type AS160, insulin-stimulated glucose uptake was not altered in muscles expressing CBD-mutant AS160. In contrast, contraction-stimulated glucose uptake was significantly decreased in CBD-mutant-expressing muscles. This inhibitory effect on glucose uptake was not associated with aberrant contraction-stimulated AS160 phosphorylation. Interestingly, AS160 expressing both calmodulin-binding and Rab-GAP (GTPase-activating protein) domain point mutations (CBD + R/K) fully restored contraction-stimulated glucose uptake.

CONCLUSIONS:

Our results suggest that the AS160 CBD directly regulates contraction-induced glucose uptake in mouse muscle and that calmodulin provides an additional means of modulating AS160 Rab-GAP function independent of phosphorylation. These findings define a novel AS160 signaling component, unique to contraction and not insulin, leading to glucose uptake in skeletal muscle.

PMID:
17717281
DOI:
10.2337/db07-0681
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center