Send to

Choose Destination
Cardiovasc Res. 2007 Nov 1;76(2):280-91. Epub 2007 Jun 29.

Functional, structural and molecular aspects of diastolic heart failure in the diabetic (mRen-2)27 rat.

Author information

University of Melbourne Department of Medicine, St. Vincent's Hospital, Victoria, Australia.



Diabetic cardiomyopathy is an increasingly recognized cause of cardiac failure despite preserved left ventricular systolic function. Given the over-expression of angiotensin II in human diabetic cardiomyopathy, we hypothesized that combining hyperglycaemia with an enhanced tissue renin-angiotensin system would lead to the development of diastolic dysfunction with adverse remodeling in a rodent model.


Homozygous (mRen-2)27 rats and non-transgenic Sprague Dawley (SD) rats were randomized to receive streptozotocin (diabetic) or vehicle (non-diabetic) and followed for 6 weeks. Prior to tissue collection, animals underwent pressure-volume loop acquisition.


Diabetic Ren-2 rats developed impairment of both active and passive phases of diastole, accompanied by reductions in SERCA-2a ATPase and phospholamban along with activation of the fetal gene program. Structural features of diabetic cardiomyopathy in the Ren-2 rat included interstitial fibrosis, cardiac myocyte hypertrophy and apoptosis in conjunction with increased activity of transforming growth factor-beta (p<0.01 compared with non-diabetic Ren-2 rats for all parameters). No significant functional or structural derangements were observed in non-transgenic, SD diabetic rats.


These findings indicate that the combination of enhanced tissue renin-angiotensin system and hyperglycaemia lead to the development of diabetic cardiomyopathy. Fibrosis, and myocyte hypertrophy, a prominent feature of this model, may be a consequence of activation of the pro-sclerotic cytokine, transforming growth factor-beta, by the diabetic state.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center