Send to

Choose Destination
Eur J Neurosci. 2007 Aug;26(4):863-74.

Oxidative stress-induced phosphorylation, degradation and aggregation of alpha-synuclein are linked to upregulated CK2 and cathepsin D.

Author information

Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224, USA.


Intracellular accumulation of alpha-synuclein (alpha-Syn) as filamentous aggregates is a pathological feature shared by Parkinson's disease, dementia with Lewy bodies and multiple system atrophy, referred to as synucleinopathies. To understand the mechanisms underlying alpha-Syn aggregation, we established a tetracycline-off inducible transfectant (3D5) of neuronal lineage overexpressing human wild-type alpha-Syn. Alpha-Syn aggregation was initiated by exposure of 3D5 cells to FeCl2. The exposure led to formation of alpha-Syn inclusions and oligomers of 34, 54, 68 kDa and higher molecular weights. The oligomers displayed immunoreactivity with antibodies to the amino-, but not to the carboxyl (C)-, terminus of alpha-Syn, indicating that C-terminally truncated alpha-Syn is a major component of oligomers. FeCl2 exposure also promoted accumulation of S129 phosphorylated monomeric alpha-Syn (P alpha-Syn) and casein kinase 2 (CK2); however, G-protein-coupled receptor kinase 2 was reduced. Treatment of FeCl2-exposed cells with CK2 inhibitors (DRB or TBB) led to decreased formation of alpha-Syn inclusions, oligomers and P alpha-Syn. FeCl2 exposure also enhanced the activity/level of cathepsin D. Treatment of the FeCl2-exposed cells with pepstatin A or NH4Cl led to reduced formation of oligomers/inclusions as well as of approximately 10 and 12 kDa truncated alpha-Syn. Our results indicate that alpha-Syn phosphorylation caused by FeCl2 is due to CK2 upregulation, and that lysosomal proteases may have a role in producing truncated alpha-Syn for oligomer assembly.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center