Format

Send to

Choose Destination
See comment in PubMed Commons below
Nature. 2007 Aug 23;448(7156):921-4.

A new species of great ape from the late Miocene epoch in Ethiopia.

Author information

1
The University Museum, the University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. suwa@um.u-tokyo.ac.jp

Abstract

With the discovery of Ardipithecus, Orrorin and Sahelanthropus, our knowledge of hominid evolution before the emergence of Pliocene species of Australopithecus has significantly increased, extending the hominid fossil record back to at least 6 million years (Myr) ago. However, because of the dearth of fossil hominoid remains in sub-Saharan Africa spanning the period 12-7 Myr ago, nothing is known of the actual timing and mode of divergence of the African ape and hominid lineages. Most genomic-based studies suggest a late divergence date-5-6 Myr ago and 6-8 Myr ago for the human-chimp and human-gorilla splits, respectively-and some palaeontological and molecular analyses hypothesize a Eurasian origin of the African ape and hominid clade. We report here the discovery and recognition of a new species of great ape, Chororapithecus abyssinicus, from the 10-10.5-Myr-old deposits of the Chorora Formation at the southern margin of the Afar rift. To the best of our knowledge, these are the first fossils of a large-bodied Miocene ape from the African continent north of Kenya. They exhibit a gorilla-sized dentition that combines distinct shearing crests with thick enamel on its 'functional' side cusps. Visualization of the enamel-dentine junction by micro-computed tomography reveals shearing crest features that partly resemble the modern gorilla condition. These features represent genetically based structural modifications probably associated with an initial adaptation to a comparatively fibrous diet. The relatively flat cuspal enamel-dentine junction and thick enamel, however, suggest a concurrent adaptation to hard and/or abrasive food items. The combined evidence suggests that Chororapithecus may be a basal member of the gorilla clade, and that the latter exhibited some amount of adaptive and phyletic diversity at around 10-11 Myr ago.

PMID:
17713533
DOI:
10.1038/nature06113
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center