Send to

Choose Destination
J Proteome Res. 2007 Sep;6(9):3581-603. Epub 2007 Aug 21.

Survey of differentially expressed proteins and genes in jasmonic acid treated rice seedling shoot and root at the proteomics and transcriptomics levels.

Author information

Department of Applied Biotechnology, Agricultural Plant Stress Research Center and Biotechnology Research Institute, Chonnam National University, Gwangju 500-757, Korea.


Two global approaches were applied to develop an inventory of differentially expressed proteins and genes in rice (cv. Nipponbare) seedling grown on Murashige and Skoog medium with and without jasmonic acid (JA). JA significantly reduced the growth of shoot, root, leaf, and leaf sheath depending on JA concentration (1, 2, 5, 10, 25, and 50 microM) as compared with control. Almost 50% growth inhibition of seedling was observed with 5 microM JA. Shoots and roots of seedlings grown on 5 microM JA for 7 days were then used for proteomics and transcriptomics analyses. Two-dimensional gel electrophoresis revealed 66 and 68 differentially expressed protein spots in shoot and root, respectively, compared to their respective controls. Tandem mass spectrometry analysis of these proteins identified 52 (shoot) and 56 (root) nonredundant proteins, belonging to 10 functional categories. Proteins involved in photosynthesis (44%), cellular respiratory (11%), and protein modification and chaperone (11%) were highly represented in shoot, whereas antioxidant system (18%), cellular respiratory (17%), and defense-related proteins (15%) were highly represented in root. Transcriptomics analysis of shoot and root identified 107 and 325 induced genes and 34 and 213 suppressed genes in shoot and root, respectively. Except of unknown genes with over 57% of the total, most genes encode for proteins involved in secondary metabolism, energy production, protein modification and chaperone, transporters, and cytochrome P450. These identified proteins and genes have been discussed with respect to the JA-induced phenotype providing a new insight into the role of JA in rice seedling growth and development.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center