Format

Send to

Choose Destination
See comment in PubMed Commons below
RNA. 2007 Oct;13(10):1603-8. Epub 2007 Aug 20.

The birth of new exons: mechanisms and evolutionary consequences.

Author information

1
Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. rsorek@lbl.gov

Abstract

A significant amount of literature was dedicated to hypotheses concerning the origin of ancient introns and exons, but accumulating evidence indicates that new exons are also constantly being added to evolving genomes. Several mechanisms contribute to the creation of novel exons in metazoan genomes, including whole gene and single exon duplications, but perhaps the most intriguing are events of exonization, where intronic sequences become exons de novo. Exonizations of intronic sequences, particularly those originating from repetitive elements, are now widely documented in many genomes including human, mouse, dog, and fish. Such de novo appearance of exons is very frequently associated with alternative splicing, with the new exon-containing variant typically being the rare one. This allows the new variant to be evolutionarily tested without compromising the original one, and provides an evolutionary strategy for generation of novel functions with minimum damage to the existing functional repertoire. This review discusses the molecular mechanisms leading to exonization, its extent in vertebrate genomes, and its evolutionary implications.

PMID:
17709368
PMCID:
PMC1986822
DOI:
10.1261/rna.682507
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center