Send to

Choose Destination
Neurobiol Dis. 2007 Nov;28(2):216-26. Epub 2007 Jul 17.

PINK1 mutants associated with recessive Parkinson's disease are defective in inhibiting mitochondrial release of cytochrome c.

Author information

Department of Physiology, Chang Gung University School of Medicine, Kwei-San, Tao-Yuan, Taiwan, ROC.


Mutations in PTEN-induced kinase 1 (PINK1) gene cause recessive familial type 6 of Parkinson's disease (PARK6). We investigated molecular mechanisms underlying PINK1 neuroprotective function and PARK6 mutation-induced loss of PINK1 function. Overexpression of wild-type PINK1 blocked mitochondrial release of apoptogenic cytochrome c, caspase-3 activation and apoptotic cell death induced by proteasome inhibitor MG132. N-terminal truncated PINK1 (NDelta35), which lacks mitochondrial localization sequence, did not block MG132-induced cytochrome c release and cytotoxicity. Despite mitochondrial expression, PARK6 mutant (E240K), (H271Q), (G309D), (L347P), (E417G) and C-terminal truncated (CDelta145) PINK1 failed to inhibit MG132-induced cytochrome c release and caspase-3 activation. Overexpression of wild-type PINK1 blocked cytochrome c release and cell death caused by atractyloside, which opens mitochondrial permeability transition pore (mPTP). PARK6 PINK1 mutants failed to inhibit atractyloside-induced cytochrome c release. These results suggest that PINK1 exerts anti-apoptotic effect by inhibiting the opening of mPTP and that PARK6 mutant PINK1 loses its ability to prevent mPTP opening and cytochrome c release.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center