Send to

Choose Destination
J Am Chem Soc. 2007 Sep 12;129(36):11111-7. Epub 2007 Aug 18.

Encapsidation of nanoparticles by red clover necrotic mosaic virus.

Author information

Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.


Icosahedral virus capsids demonstrate a high degree of selectivity in packaging cognate nucleic acid genome components during virion assembly. The 36 nm icosahedral plant virus Red clover necrotic mosaic virus (RCNMV) packages its two genomic ssRNAs via a specific capsid protein (CP) genomic RNA interaction. A 20-nucleotide hairpin structure within the genomic RNA-2 hybridizes with RNA-1 to form a bimolecular complex, which is the origin of assembly (OAS) in RCNMV that selectively recruits and orients CP subunits initiating virion assembly. In this Article, an oligonucleotide mimic of the OAS sequence was attached to Au, CoFe2O4, and CdSe nanoparticles ranging from 3 to 15 nm, followed by addition of RNA-1 to form a synthetic OAS to direct the virion-like assembly by RCNMV CP. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) measurements were consistent with the formation of virus-like particles (VLPs) comparable in size to native RCNMV. Attempts to encapsidate nanoparticles with diameters larger than 17 nm did not result in well-formed viral capsids. These results are consistent with the presence of a 17 nm cavity in native RCNMV. Covalent linkage of the OAS to nanoparticles directs RNA-dependent encapsidation and demonstrates that foreign cargo can be packaged into RCNMV virions. The flexibility of the RCNMV CP to encapsidate different materials, as long as it is within encapsidation constraint, is a critical factor to be considered as a drug delivery and diagnostic vehicle in biomedical applications.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center