Format

Send to

Choose Destination
J Clin Microbiol. 2007 Nov;45(11):3555-63. Epub 2007 Aug 15.

Strategic approach to produce low-cost, efficient, and stable competitive internal controls for detection of RNA viruses by use of reverse transcription-PCR.

Author information

1
Area Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.

Abstract

Molecular diagnostics based on reverse transcription (RT)-PCR are routinely complicated by the lack of stable internal controls, leading to falsely negative results. We describe a strategy to produce a stable competitive internal control (CIC) based on a Qbeta phage derivative (recombinant Qbeta [rQbeta]) bearing primers KY78 and KY80, which are widely used in the detection of hepatitis C virus (HCV). rQbeta was RNase resistant and stable at 4 degrees C for 452 days in SM medium (0.1 M NaCl, 8 mM MgSO(4).7H(2)O, 50 mM Tris HCl [pH 7.5], 2% gelatin) and for 125 days after lyophilization and reconstitution. rQbeta performance as a CIC was evaluated. rQbeta was added to HCV-positive samples, followed by RNA extraction and a CIC-HCV RT-PCR assay. This method combines RT-PCR, liquid hybridization with nonradioactive probes, and enzyme immunoanalysis. No influence of the CIC on qualitative HCV detection was observed independently of viral load, and results had high concordance with those of commercial kits. In conclusion, we describe a versatile, low-cost alternative strategy to armored RNA technology that can be adapted for detection or real-time applications of any RNA target. Moreover, the CIC reported here is an essential reagent for HCV screening in blood banks in resource-limited settings.

PMID:
17699653
PMCID:
PMC2168486
DOI:
10.1128/JCM.02601-06
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center