Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochem J. 2007 Dec 1;408(2):251-8.

Effect of glycation on alpha-crystallin structure and chaperone-like function.

Author information

1
Biochemistry Division, National Institute of Nutrition, Hyderabad 500 007, India.

Abstract

The chaperone-like activity of alpha-crystallin is considered to play an important role in the maintenance of the transparency of the eye lens. However, in the case of aging and in diabetes, the chaperone function of alpha-crystallin is compromized, resulting in cataract formation. Several post-translational modifications, including non-enzymatic glycation, have been shown to affect the chaperone function of alpha-crystallin in aging and in diabetes. A variety of agents have been identified as the predominant sources for the formation of AGEs (advanced glycation end-products) in various tissues, including the lens. Nevertheless, glycation of alpha-crystallin with various sugars has resulted in divergent results. In the present in vitro study, we have investigated the effect of glucose, fructose, G6P (glucose 6-phosphate) and MGO (methylglyoxal), which represent the major classes of glycating agents, on the structure and chaperone function of alpha-crystallin. Modification of alpha-crystallin with all four agents resulted in the formation of glycated protein, increased AGE fluorescence, protein cross-linking and HMM (high-molecular-mass) aggregation. Interestingly, these glycation-related profiles were found to vary with different glycating agents. For instance, CML [N(epsilon)-(carboxymethyl)lysine] was the predominant AGE formed upon glycation of alpha-crystallin with these agents. Although fructose and MGO caused significant conformational changes, there were no significant structural perturbations with glucose and G6P. With the exception of MGO modification, glycation with other sugars resulted in decreased chaperone activity in aggregation assays. However, modification with all four sugars led to the loss of chaperone activity as assessed using an enzyme inactivation assay. Glycation-induced loss of alpha-crystallin chaperone activity was associated with decreased hydrophobicity. Furthermore, alpha-crystallin isolated from glycated TSP (total lens soluble protein) had also increased AGE fluorescence, CML formation and diminished chaperone activity. These results indicate the susceptibility of alpha-crystallin to non-enzymatic glycation by various sugars and their derivatives, whose levels are elevated in diabetes. We also describe the effects of glycation on the structure and chaperone-like activity of alpha-crystallin.

PMID:
17696877
PMCID:
PMC2267351
DOI:
10.1042/BJ20070989
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center