Format

Send to

Choose Destination
See comment in PubMed Commons below
Curr Protein Pept Sci. 2007 Aug;8(4):381-411.

Free resources to assist structure-based virtual ligand screening experiments.

Author information

1
INSERM U648, University Paris V, 45 rue des Sts Peres, 75006 Paris, France. bruno.villoutreix@univ-paris5.fr

Abstract

In today's research environment, a wealth of experimental/theoretical structural data is available and the number of therapeutically relevant macromolecular structures is growing rapidly. This, coupled with the huge number of small non-peptide potential drug candidates easily available (over 7 million compounds), highlight the need of using computer-aided techniques for the efficient identification and optimization of novel hit compounds. Virtual (or in silico) ligand screening based on the three-dimensional structure of macromolecular targets (SB-VLS) is firmly established as an important approach to identify chemical entities that have a high likelihood of binding to a target molecule to elicit desired biological responses. A myriad of free applications and services facilitating the drug discovery process have been posted on the Web. In this review, we cite over 350 URLs that are useful for SB-VLS projects and essentially free for academic groups. We attempt to provide links for in silico ADME/tox prediction tools, compound collections, some ligand-based methods, characterization/simulation of 3D targets and homology modeling tools, druggable pocket predictions, active site comparisons, analysis of macromolecular interfaces, protein docking tools to help identify binding pockets and protein-ligand docking/scoring methods. As such, we aim at providing both, methods pertaining to the field of Structural Bioinformatics (defined here as tools to study macromolecules) and methods pertaining to the field of Chemoinformatics (defined here as tools to make better decisions faster in the arena of drug/lead identification and optimization). We also report several recent success stories using these free computer methods. This review should help readers finding free computer tools useful for their projects. Overall, we are confident that these tools will facilitate rapid and cost-effective identification of new hit compounds. The URLs presented in this review will be updated regularly at www.vls3d.com in the coming months, "Links" section.

PMID:
17696871
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Bentham Science Publishers Ltd.
    Loading ...
    Support Center