Format

Send to

Choose Destination
Ecol Lett. 2007 Nov;10(11):1017-28. Epub 2007 Aug 13.

The maximum entropy formalism and the idiosyncratic theory of biodiversity.

Author information

1
Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada. spueyo@ub.edu

Abstract

Why does the neutral theory, which is based on unrealistic assumptions, predict diversity patterns so accurately? Answering questions like this requires a radical change in the way we tackle them. The large number of degrees of freedom of ecosystems pose a fundamental obstacle to mechanistic modelling. However, there are tools of statistical physics, such as the maximum entropy formalism (MaxEnt), that allow transcending particular models to simultaneously work with immense families of models with different rules and parameters, sharing only well-established features. We applied MaxEnt allowing species to be ecologically idiosyncratic, instead of constraining them to be equivalent as the neutral theory does. The answer we found is that neutral models are just a subset of the majority of plausible models that lead to the same patterns. Small variations in these patterns naturally lead to the main classical species abundance distributions, which are thus unified in a single framework.

PMID:
17692099
PMCID:
PMC2121135
DOI:
10.1111/j.1461-0248.2007.01096.x
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center