Format

Send to

Choose Destination
Biosci Biotechnol Biochem. 2007 Aug;71(8):1811-8. Epub 2007 Aug 7.

Mammalian glycerophosphodiester phosphodiesterases.

Author information

1
Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan. yanaka@hiroshima-u.ac.jp

Abstract

Bacterial glycerophosphodiester phosphodiesterases (GP-PDEs), GlpQ and UgpQ, are well-characterized periplasmic and cytosolic proteins that play critical roles in the hydrolysis of deacylated glycerophospholipids to glycerol phosphate and alcohol, which are utilized as major sources of carbon and phosphate. In contrast, two novel mammalian GP-PDEs, GDE1/MIR16 and GDE3, were recently identified, and were shown to be involved in several physiological functions. GDE1/MIR16 was identified as a membrane protein interacting with RGS16, a regulator of G protein signaling, and found to hydrolyze glycerophosphoinositol preferentially. We have found that expression of GDE3 is significantly up-regulated during osteoblast differentiation and is involved in morphological changes of cells. Furthermore, five mammalian GP-PDEs were virtually identified, and very recent studies indicate that retinoic acid-induced expression of GDE2 plays essential roles in neuronal differentiation and neurite outgrowth. Thus mammalian GP-PDEs are likely to be important in controlling numerous cellular events, indicating that the GP-PDE superfamily in mammals might be a pharmacological target in the future.

PMID:
17690467
DOI:
10.1271/bbb.70062
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Taylor & Francis Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
Loading ...
Support Center