Send to

Choose Destination
Curr Biol. 2007 Aug 21;17(16):1420-5. Epub 2007 Aug 9.

Toward resolving the eukaryotic tree: the phylogenetic positions of jakobids and cercozoans.

Author information

Centre Robert Cedergren, Département de Biochimie, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec H3T 1J4, Canada.


Resolving the global phylogeny of eukaryotes has proven to be challenging. Among the eukaryotic groups of uncertain phylogenetic position are jakobids, a group of bacterivorous flagellates that possess the most bacteria-like mitochondrial genomes known. Jakobids share several ultrastructural features with malawimonads and an assemblage of anaerobic protists (e.g., diplomonads and oxymonads). These lineages together with Euglenozoa and Heterolobosea have collectively been designated "excavates". However, published molecular phylogenies based on the sequences of nuclear rRNAs and up to six nucleus-encoded proteins do not provide convincing support for the monophyly of excavates, nor do they uncover their relationship to other major eukaryotic groups. Here, we report the first large-scale eukaryotic phylogeny, inferred from 143 nucleus-encoded proteins comprising 31,604 amino acid positions, that includes jakobids, malawimonads and cercozoans. We obtain compelling support for the monophyly of jakobids, Euglenozoa plus Heterolobosea (JEH group), and for the association of cercozoans with stramenopiles plus alveolates. Furthermore, we observe a sister-group relationship between the JEH group and malawimonads after removing fast-evolving species from the dataset. We discuss the implications of these results for the concept of "excavates" and for the elucidation of eukaryotic phylogeny in general.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center