Send to

Choose Destination
See comment in PubMed Commons below
Inhal Toxicol. 2007 Aug;19(10):833-48.

Generation and characterization of test atmospheres with nanomaterials.

Author information

  • 1Experimental Toxicology and Ecology, BASF Aktiengesellschaft, Ludwigshafen, Germany.


To ensure the product safety of nanomaterials, BASF has initiated an extensive program to study the potential inhalation toxicity of nanosize particles. As preparation work for upcoming inhalation studies, the following manufactured nanomaterials have been evaluated for their behavior in an exposure system designed for inhalation toxicity studies: titanium dioxide, carbon black, Aerosil R104, Aerosil R106, aluminum oxide, copper(II) oxide, amorphous silicon dioxide, zinc oxide, and zirconium(IV) oxide. As the physicochemical properties and the complex nature of ultrafine aerosols may substantially influence the toxic potential, the particle size, specific surface area, zeta potential, and morphology of each of the materials were determined. Aerosols of each material were generated using a dry powder aerosol generator and by nebulization of particle suspensions. The mass concentration of the particles in the inhalation atmosphere was determined gravimetrically and the particle size was determined using a cascade impactor, an optical particle counter, and a scanning mobility particle sizer. The dispersion techniques used generated fine aerosols with particle size distributions in the respiratory range. However, as a result of the significant agglomeration of nanoparticles in the test materials evaluated, no more than a few mass percent of the materials were present as single nanoparticles (i.e., < 100 nm). Considering the number, a greater percentage of nanoparticles was present. Based on the obtained results and experience with the equipment, a technical setup for inhalation studies with nanomaterials is proposed. Furthermore, a stepwise testing approach is recommended that also could reduce the number of animals used in testing.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis
    Loading ...
    Support Center