Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2007 Sep 4;46(35):9992-10000. Epub 2007 Aug 8.

PDE6 in lamprey Petromyzon marinus: implications for the evolution of the visual effector in vertebrates.

Author information

1
Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA.

Abstract

Photoreceptor rod and cone phosphodiesterases comprise the sixth family of cyclic nucleotide phosphodiesterases (PDE6). PDE6s have uniquely evolved as effector enzymes in the vertebrate phototransduction cascade. To understand the evolution of the PDE6 family, we have examined PDE6 in lamprey, an ancient vertebrate group. A single PDE6 catalytic subunit transcript was found in the sea lamprey Petromyzon marinus cDNA library. The lamprey PDE6 sequence showed a high degree of homology with mammalian PDE6 and equally distant relationships with the rod and cone enzymes. In contrast, two different PDE6 inhibitory Pgamma subunits, a cone-type Pgamma1 and a mixed cone/rod-type Pgamma2, have been identified in the lamprey retina. Immunofluorescence analysis demonstrated that Pgamma1 and Pgamma2 are expressed in the long and short photoreceptors of sea lamprey, respectively. The catalytic PDE6 subunit was present in the photoreceptors of both types and colocalized with the Pgamma subunits. Recombinant Pgamma1 and Pgamma2 potently inhibited trypsin-activated lamprey and bovine PDE6 enzymes. Our results point to a high degree of conservation of PDE6 genes during the vertebrate evolution. The apparent duplication of the Pgamma gene in the stem of vertebrate lineage may have been an essential component of the evolution of scotopic vision in early vertebrates.

PMID:
17685558
DOI:
10.1021/bi700535s
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center