Format

Send to

Choose Destination
Cell Cycle. 2007 Jul 15;6(14):1779-88.

FHL2 regulates cell cycle-dependent and doxorubicin-induced p21Cip1/Waf1 expression in breast cancer cells.

Author information

1
Department of Gynecology and Obstetrics, Medical School, J.W. Goethe-University, Frankfurt, Germany. bernd.martin@em.uni-frankfurt.de

Abstract

The transcriptional cofactor FHL2 interacts with a broad variety of transcription factors and its expression is often deregulated in various types of cancer. Here we analyzed for the first time the molecular function of FHL2 in breast cancer. FHL2 is overexpressed in almost all human mammary carcinoma samples tested but not in normal breast tissues and only low levels of FHL2 expression were present in four premalignant ductal carcinoma in situ (DCIS). Cell cycle analysis revealed an upregulation of endogenous FHL2 towards G2/M in MDA-MB 231 cells and an accelerated G2/M transition when FHL2 expression was suppressed in these cells. In search for G2/M specific target genes regulated by FHL2, we found that expression of the cell cycle inhibitor p21Cip1/Waf1 (hereafter p21) is dependent on FHL2 in MDA-MB 231 breast cancer cells. Downregulation of FHL2 by shRNA abrogated the cell cycle dependent upregulation of p21 as well as the induction of p21 in response to treatment with the DNA damaging agent doxorubicin. FHL2-dependent p21 expression occurs in a p53-independent manner and p21 expression can be downregulated by specific inhibition of mitogen-activated protein kinases (MAPKs), implicating an involvement of MAPK signaling in this regulation. Analysis of FHL2 contribution to the MAPK signaling identified FHL2 as an important downstream effector of MAPKs in breast cancer cells, capable of transactivating endogenous AP1 target genes as well as AP1 dependent reporter genes. Finally, downregulation of FHL2 reduces the ability of MDA-MB 231 cells to form colonies in soft agar, while FHL2 overexpression enhances colony formation of breast cancer cells. Thus, our findings indicate that overexpression of the transcriptional cofactor FHL2 contributes to breast cancer development by mediating transcriptional activation of MAPK target genes known to be involved in cancer progression, such as p21.

PMID:
17682292
DOI:
10.4161/cc.6.14.4448
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Taylor & Francis
Loading ...
Support Center