Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol. 1991 Dec;261(6 Pt 1):C964-72.

Characteristics of homogeneously small keratinocytes from newborn rat skin: possible epidermal stem cells.

Author information

Centre National de la Recherche Scientifique, Unite de Recherche Associee 583, Hôpital Necker-Enfants-Malades, Paris, France.


The aims of the present study were to characterize the phenotype, growth kinetics, and proliferative activation in culture of a population of poorly differentiated homogeneously small (HS) keratinocytes. These slow-cycling cells were separated by unit gravity sedimentation from a population of actively proliferating basal keratinocytes in newborn rat skin. This population (approximately 1% of the total basal keratinocytes) consisted of extremely small cells with little cytoplasm or RNA. Their positive KL4 staining demonstrates that they were keratinocytes. HS keratinocytes did not, however, contain epidermal calcium binding protein. Acridine orange, bivariate Hoechst, and ethidium bromide flow cytometry of in vitro bromodeoxyuridine-labeled cells as well as Ki67 staining showed that HS keratinocytes were in the G0 stage of the cell cycle and did not actively proliferate in vivo. [3H]thymidine label-retaining cells were found only in the HS cell population, showing that HS cells may originate from a central position in the epidermal proliferative unit. Growth of HS cells in vitro was characterized by a delayed but progressive increase in RNA before entry into the cell cycle. The clonogenic efficiency of HS cells in primary culture was much less than that of larger cells. Subclones of HS cell colonies exceeded primary colonies in their cloning efficiency and proliferative potential, suggesting that HS cells, although normally prevented from dividing, retain a high self-renewal capacity. They also maintain the ability to differentiate. The results are consistent with the concept that HS cell population may represent the epidermal-specific progenitor cells which act as stem cells in this tissue.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center