Format

Send to

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 2007 Oct;189(20):7262-72. Epub 2007 Aug 3.

A Serratia marcescens OxyR homolog mediates surface attachment and biofilm formation.

Author information

1
Charles T Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, UPMC Eye Center, Pittsburgh, PA 15213, USA. shanksrm@upmc.edu

Abstract

OxyR is a conserved bacterial transcription factor with a regulatory role in oxidative stress response. From a genetic screen for genes that modulate biofilm formation in the opportunistic pathogen Serratia marcescens, mutations in an oxyR homolog and predicted fimbria structural genes were identified. S. marcescens oxyR mutants were severely impaired in biofilm formation, in contrast to the hyperbiofilm phenotype exhibited by oxyR mutants of Escherichia coli and Burkholderia pseudomallei. Further analysis revealed that OxyR plays a role in the primary attachment of cells to a surface. Similar to what is observed in other bacterial species, S. marcescens OxyR is required for oxidative stress resistance. Mutations in oxyR and type I fimbrial genes resulted in severe defects in fimbria-associated phenotypes, revealing roles in cell-cell and cell-biotic surface interactions. Transmission electron microscopy revealed the absence of fimbria-like surface structures on an OxyR-deficient strain and an enhanced fimbrial phenotype in strains bearing oxyR on a multicopy plasmid. The hyperfimbriated phenotype conferred by the multicopy oxyR plasmid was absent in a type I fimbrial mutant background. Real-time reverse transcriptase PCR indicated an absence of transcripts from a fimbrial operon in an oxyR mutant that were present in the wild type and a complemented oxyR mutant strain. Lastly, chromosomal P(lac)-mediated expression of fimABCD was sufficient to restore wild-type levels of yeast agglutination and biofilm formation to an oxyR mutant. Together, these data support a model in which OxyR contributes to early stages of S. marcescens biofilm formation by influencing fimbrial gene expression.

PMID:
17675374
PMCID:
PMC2168423
DOI:
10.1128/JB.00859-07
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center