Format

Send to

Choose Destination
J Biol Chem. 2007 Sep 28;282(39):28362-72. Epub 2007 Aug 2.

The CDP-ethanolamine pathway and phosphatidylserine decarboxylation generate different phosphatidylethanolamine molecular species.

Author information

1
Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, and Institute of Biomembranes, University of Utrecht, Utrecht, The Netherlands.

Abstract

In mammalian cells, phosphatidylethanolamine (PtdEtn) is mainly synthesized via the CDP-ethanolamine (Kennedy) pathway and by decarboxylation of phosphatidylserine (PtdSer). However, the extent to which these two pathways contribute to overall PtdEtn synthesis both quantitatively and qualitatively is still not clear. To assess their contributions, PtdEtn species synthesized by the two routes were labeled with pathway-specific stable isotope precursors, d(3)-serine and d(4)-ethanolamine, and analyzed by high performance liquid chromatography-mass spectrometry. The major conclusions from this study are that (i) in both McA-RH7777 and Chinese hamster ovary K1 cells, the CDP-ethanolamine pathway was favored over PtdSer decarboxylation, and (ii) both pathways for PtdEtn synthesis are able to produce all diacyl-PtdEtn species, but most of these species were preferentially made by one pathway. For example, the CDP-ethanolamine pathway preferentially synthesized phospholipids with mono- or di-unsaturated fatty acids on the sn-2 position (e.g. (16:0-18:2)PtdEtn and (18:1-18:2)PtdEtn), whereas PtdSer decarboxylation generated species with mainly polyunsaturated fatty acids on the sn-2 position (e.g. (18:0-20:4)PtdEtn and (18:0-20:5)PtdEtn in McArdle and (18: 0-20:4)PtdEtn and (18:0-22:6)PtdEtn in Chinese hamster ovary K1 cells). (iii) The main PtdEtn species newly synthesized from the Kennedy pathway in the microsomal fraction appeared to equilibrate rapidly between the endoplasmic reticulum and mitochondria. (iv) Newly synthesized PtdEtn species preferably formed in the mitochondria, which is at least in part due to the substrate specificity of the phosphatidylserine decarboxylase, seemed to be retained in this organelle. Our data suggest a potentially essential role of the PtdSer decarboxylation pathway in mitochondrial functioning.

PMID:
17673461
DOI:
10.1074/jbc.M703786200
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center