Format

Send to

Choose Destination
See comment in PubMed Commons below
Curr Opin Pharmacol. 2007 Aug;7(4):381-91. Epub 2007 Jul 26.

Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress.

Author information

  • 1Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, and the Louis Stokes Cleveland Veterans Affairs Medical Research Center, Cleveland, OH 44106-4965, United States.

Abstract

Reversible protein S-glutathionylation (protein-SSG) is an important post-translational modification, providing protection of protein cysteines from irreversible oxidation and serving to transduce redox signals. Analogous to phosphatases, glutaredoxin (GRx) enzymes catalyze deglutathionylation of proteins, regulating diverse intracellular signaling pathways. Recently, other enzymes have been reported to exhibit deglutathionylating activity, but their contribution to intracellular protein deglutathionylation is uncertain. Currently, no enzyme has been shown to serve as a catalyst of S-glutathionylation in situ, although potential prototypes are reported, including human GRx1 and the pi isoform of glutathione-S-transferase (GSTpi). Further insight into cellular mechanisms of protein glutathionylation and deglutathionylation will enrich our understanding of redox signal transduction and potentially identify new therapeutic targets for diseases in which oxidative stress perturbs normal redox signaling. Accordingly, this review focuses primarily on mechanisms of catalysis in mammalian systems.

PMID:
17662654
DOI:
10.1016/j.coph.2007.06.003
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center