Format

Send to

Choose Destination
See comment in PubMed Commons below
Cereb Cortex. 2008 Apr;18(4):938-50. Epub 2007 Jul 26.

Absence of LPA1 signaling results in defective cortical development.

Author information

  • 1Unidad de Investigación, Fundación IMABIS, Hospital Carlos Haya, E-29010 Málaga, Spain. guillermo.estivill@fundacionimabis.org

Abstract

Lysophosphatidic acid (LPA) is a simple phospholipid with extracellular signaling properties mediated by specific G protein-coupled receptors. At least 2 LPA receptors, LPA(1) and LPA(2), are expressed in the developing brain, the former enriched in the neurogenic ventricular zone (VZ), suggesting a normal role in neurogenesis. Despite numerous studies reporting the effects of exogenous LPA using in vitro neural models, the first LPA(1) loss-of-function mutants reported did not show gross cerebral cortical defects in the 50% that survived perinatal demise. Here, we report a role for LPA(1) in cortical neural precursors resulting from analysis of a variant of a previously characterized LPA(1)-null mutant that arose spontaneously during colony expansion. These LPA(1)-null mice, termed maLPA(1), exhibit almost complete perinatal viability and show a reduced VZ, altered neuronal markers, and increased cortical cell death that results in a loss of cortical layer cellularity in adults. These data support LPA(1) function in normal cortical development and suggest that the presence of genetic modifiers of LPA(1) influences cerebral cortical development.

PMID:
17656621
DOI:
10.1093/cercor/bhm132
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center