Format

Send to

Choose Destination
Oncogene. 2008 Jan 31;27(6):811-22. Epub 2007 Jul 23.

Effects of protein phosphorylation on ubiquitination and stability of the translational inhibitor protein 4E-BP1.

Author information

1
Translational Control Group, Division of Basic Medical Sciences, Centre for Molecular and Metabolic Signalling, St George's, University of London, London, UK.

Abstract

The availability of the eukaryotic polypeptide chain initiation factor 4E (eIF4E) for protein synthesis is regulated by the 4E-binding proteins (4E-BPs), which act as inhibitors of cap-dependent mRNA translation. The ability of the 4E-BPs to sequester eIF4E is regulated by reversible phosphorylation at multiple sites. We show here that, in addition, 4E-BP1 is a substrate for polyubiquitination and that some forms of 4E-BP1 are simultaneously polyubiquitinated and phosphorylated. In Jurkat cells inhibition of proteasomal activity by MG132 enhances the level of hypophosphorylated, unmodified 4E-BP1 but only modestly increases the accumulation of high-molecular-weight, phosphorylated forms of 4E-BP1. In contrast, inhibition of protein phosphatase activity with calyculin A reduces the level of unmodified 4E-BP1 but strongly enhances the amount of phosphorylated, high-molecular-weight 4E-BP1. Turnover measurements in the presence of cycloheximide show that, whereas 4E-BP1 is normally a very stable protein, calyculin A decreases the apparent half-life of the normal-sized protein. Affinity chromatography on m(7)GTP-Sepharose indicates that the larger forms of 4E-BP1 bind very poorly to eIF4E. We suggest that the phosphorylation of 4E-BP1 may play a dual role in the regulation of protein synthesis, both reducing the affinity of 4E-BP1 for eIF4E and promoting the conversion of 4E-BP1 to alternative, polyubiquitinated forms.

PMID:
17653084
DOI:
10.1038/sj.onc.1210678
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center