The effect of a 12-week combined exercise intervention program on physical performance and gait kinematics in community-dwelling elderly women

J Physiol Anthropol. 2007 May;26(3):325-32. doi: 10.2114/jpa2.26.325.

Abstract

This study aimed to determine if combined exercise intervention improves physical performance and gait joint-kinematics including the joint angle and dynamic range of motion (ROM) related to the risk of falling in community-dwelling elderly women. A 12-week combined exercise intervention program with extra emphasis on balance, muscle strength, and walking ability was designed to improve physical performance and gait. Twenty participants attended approximately two-hour exercise sessions twice weekly for 12 weeks. Participants underwent a physical performance battery, including static balance, sit and reach, whole body reaction time, 10 m obstacle walk, 10 m maximal walk, 30-second chair stand, to determine a physical performance score, and received quantitative gait kinematics measurements at baseline and in 12 weeks. Significant lower extremity strength improvement 13.5% (p<.001) was observed, which was accompanied by significant decreases in time of the 10 m obstacle walk (p<.05) and whole body reaction time (p<.001) in this study. However, no significant differences were seen for static balance and flexibility from baseline. For gait kinematics, in the mid-swing phase, knee and hip joint angle changed toward flexion (p<.01, p<.05, respectively). Ankle dynamic ROM significantly increased (p<.05) following exercise intervention. The plantar flexion angle of the ankle in the toe-off phase was increased significantly (p<.01). However, other gait parameters were not significantly different from baseline. These findings from the present investigation provide evidence of significant improvements in physical performance related to the risk factors of falling and safe gait strategy with a combined exercise intervention program in community-dwelling elderly women. The results suggest this exercise intervention could be an effective approach to ameliorate the risk factors for falls and to promote safer locomotion in elderly community-dwelling women.

Publication types

  • Clinical Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Accidental Falls / prevention & control*
  • Aged
  • Aged, 80 and over
  • Biomechanical Phenomena
  • Exercise Therapy*
  • Female
  • Gait / physiology*
  • Homebound Persons
  • Humans
  • Muscle Weakness / rehabilitation*
  • Range of Motion, Articular
  • Treatment Outcome
  • Walking / physiology