Format

Send to

Choose Destination
See comment in PubMed Commons below
J Nucl Med. 2007 Aug;48(8):1313-9. Epub 2007 Jul 13.

In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft.

Author information

1
Department of Medical Oncology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands.

Abstract

Vascular endothelial growth factor (VEGF), released by tumor cells, is an important growth factor in tumor angiogenesis. The humanized monoclonal antibody bevacizumab blocks VEGF-induced tumor angiogenesis by binding, thereby neutralizing VEGF. Our aim was to develop radiolabeled bevacizumab for noninvasive in vivo VEGF visualization and quantification with the single gamma-emitting isotope 111In and the PET isotope 89Zr.

METHODS:

Labeling, stability, and binding studies were performed. Nude mice with a human SKOV-3 ovarian tumor xenograft were injected with 89Zr-bevacizumab, 111In-bevacizumab, or human 89Zr-IgG. Human 89Zr-IgG served as an aspecific control antibody. Small-animal PET and microCT studies were obtained at 24, 72, and 168 h after injection of 89Zr-bevacizumab and 89Zr-IgG (3.5 +/- 0.5 MBq, 100 +/- 6 microg, 0.2 mL [mean +/- SD]). Small-animal PET and microCT images were fused to calculate tumor uptake and compared with ex vivo biodistribution at 168 h after injection. 89Zr- and 111In-bevacizumab ex vivo biodistribution was compared at 24, 72, and 168 h after injection (2.0 +/- 0.5 MBq each, 100 +/- 4 microg in total, 0.2 mL).

RESULTS:

Labeling efficiencies, radiochemical purity, stability, and binding properties were optimal for the radioimmunoconjugates. Small-animal PET showed uptake in well-perfused organs at 24 h and clear tumor localization from 72 h onward. Tumor uptake determined by quantification of small-animal PET images was higher for 89Zr-bevacizumab-namely, 7.38 +/- 2.06 %ID/g compared with 3.39 +/- 1.16 %ID/g (percentage injected dose per gram) for human 89Zr-IgG (P = 0.011) at 168 h and equivalent to ex vivo biodistribution studies. Tracer uptake in other organs was seen primarily in liver and spleen. 89Zr- and 111In-bevacizumab biodistribution was comparable.

CONCLUSION:

Radiolabeled bevacizumab showed higher uptake compared with radiolabeled human IgG in a human SKOV-3 ovarian tumor xenograft. Noninvasive quantitative small-animal PET was similar to invasive ex vivo biodistribution. Radiolabeled bevacizumab is a new tracer for noninvasive in vivo imaging of VEGF in the tumor microenvironment.

PMID:
17631557
DOI:
10.2967/jnumed.107.041301
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center