Format

Send to

Choose Destination
See comment in PubMed Commons below
J Theor Biol. 2007 Oct 7;248(3):546-51. Epub 2007 Jun 9.

Using Chou's amphiphilic pseudo-amino acid composition and support vector machine for prediction of enzyme subfamily classes.

Author information

1
School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China.

Abstract

With the rapid increment of protein sequence data, it is indispensable to develop automated and reliable predictive methods for protein function annotation. One approach for facilitating protein function prediction is to classify proteins into functional families from primary sequence. Being the most important group of all proteins, the accurate prediction for enzyme family classes and subfamily classes is closely related to their biological functions. In this paper, for the prediction of enzyme subfamily classes, the Chou's amphiphilic pseudo-amino acid composition [Chou, K.C., 2005. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21, 10-19] has been adopted to represent the protein samples for training the 'one-versus-rest' support vector machine. As a demonstration, the jackknife test was performed on the dataset that contains 2640 oxidoreductase sequences classified into 16 subfamily classes [Chou, K.C., Elrod, D.W., 2003. Prediction of enzyme family classes. J. Proteome Res. 2, 183-190]. The overall accuracy thus obtained was 80.87%. The significant enhancement in the accuracy indicates that the current method might play a complementary role to the exiting methods.

PMID:
17628605
DOI:
10.1016/j.jtbi.2007.06.001
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center