Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2007 Jul 11;27(28):7469-75.

High cyclophilin D content of synaptic mitochondria results in increased vulnerability to permeability transition.

Author information

Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA.


Mitochondria isolated from synaptosomes are more sensitive to Ca2+ overload and the resultant opening of the mitochondrial permeability transition pore (mPTP) than nonsynaptic mitochondria. To identify the mechanisms underlying these differences in Ca2+ dynamics, we examined relative levels of mPTP components in synaptic versus nonsynaptic mitochondria. Synaptic mitochondria had higher levels of cyclophilin D when compared with nonsynaptic mitochondria, whereas levels of the voltage-dependent anion channel and the adenine nucleotide translocase were similar in the two mitochondrial fractions. These differences in Ca2+ handling between synaptic and nonsynaptic mitochondria were greatly reduced in cyclophilin D null [Ppif-/- (peptidylprolyl isomerase F)] mice. Higher concentrations of cyclosporine A, which interacts with cyclophilin D to delay mPTP opening, were necessary to increase the Ca2+ uptake capacity of synaptic versus nonsynaptic mitochondria. To determine whether the differences in Ca2+ handling might reflect the relative abundance of neuronal and glial mitochondria in the two mitochondrial fractions, we compared cyclophilin D levels in primary cortical neurons and astrocytes. Primary rat cortical neurons possess higher cyclophilin D levels than do primary astrocytes. In the adult rat brain, cyclophilin D immunoreactivity was abundant in neurons but sparse in astrocytes. Together, these results demonstrate that the Ca2+ handling differences observed in synaptic versus nonsynaptic mitochondria are primarily the result of the high levels of cyclophilin D in synaptic mitochondria, reflecting the greater proportion of neuronal mitochondria in this fraction. The high levels of cyclophilin D in neuronal mitochondria result in their greater vulnerability to mPT and in higher levels of cyclosporine A being required to inhibit mPTP opening.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center