Format

Send to

Choose Destination
Amino Acids. 2008 Jun;35(1):195-200. Epub 2007 Jul 6.

Characterisation of the barrier caused by luminally secreted gastro-intestinal proteolytic enzymes for two novel cystine-knot microproteins.

Author information

1
ThioMatrix GmbH, Research Center Innsbruck, Innsbruck, Austria. m.werle@thiomatrix.com

Abstract

It was the aim of this study to evaluate the stability of two novel cystine-knot microproteins (CKM) SE-ET-TP-020 and SE-MC-TR-020 with potential clinical relevance towards luminally secreted proteases of the gastrointestinal tract in order to gain information about their potential for oral administration. Therefore, the stability of the two CKM and the model-drug insulin towards collected porcine gastric and small intestinal juice as well as towards isolated proteolytic enzymes was evaluated under physiological conditions. No intact SE-ET-EP-020 was detected after few seconds of incubation with porcine small intestinal juice. SE-ET-TP-020 was also degraded in porcine gastric juice. Furthermore, SE-ET-TP-020 was extensively degraded by isolated chymotrypsin, trypsin and pepsin. Moreover, it was degraded by elastase. SE-MC-TR-020 was degraded entirely within approximately 2 h when incubated in porcine small intestinal juice, whereas no degradation was observed within a 3 h incubation period with porcine gastric juice. In presence of the isolated proteolytic enzymes, SE-MC-TR-020 was only slightly degraded by trypsin and pepsin, whereas elastase caused no degradation to SE-MC-TR-020 at all. Chymotrypsin was the protease that caused most degradation to SE-MC-TR-020. The model drug insulin was degraded extensively by chymotrypsin, elastase, pepsin and trypsin as well as by porcine gastric and porcine small intestinal juice. In conclusion, a precise characterisation of SE-ET-TP-020 and SE-MC-TR-020 degrading luminally secreted GI enzymes has been made, which is an important and substantial prerequisite for the further optimisation of these CKM.

PMID:
17619117
DOI:
10.1007/s00726-007-0569-1
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center