Send to

Choose Destination
Circ Res. 2007 Aug 17;101(4):377-86. Epub 2007 Jul 5.

Cardiac transgenic and gene transfer strategies converge to support an important role for troponin I in regulating relaxation in cardiac myocytes.

Author information

Department of Molecular and Integrative Physiology, 7730 Medical Science II, University of Michigan, Ann Arbor, MI 48109-0622, USA.


Elucidating the relative roles of cardiac troponin I (cTnI) and phospholamban (PLN) in beta-adrenergic-mediated hastening of cardiac relaxation has been challenging and controversial. To test the hypothesis that beta-adrenergic phosphorylation of cTnI has a prominent role in accelerating cardiac myocyte relaxation performance we used transgenic (Tg) mice bearing near complete replacement of native cTnI with a beta-adrenergic phospho-mimetic of cTnI whereby tandem serine codons 23/24 were converted to aspartic acids (cTnI S23/24D). Adult cardiac myocytes were isolated and contractility determined at physiological temperature under unloaded and loaded conditions using micro-carbon fibers. At baseline, cTnI S23/24D myocytes had significantly faster relaxation times relative to controls, and isoproterenol stimulation (Iso) had only a small effect to further speed relaxation in cTnI S23/24D myocytes (delta Iso: 7.2 ms) relative to the maximum Iso effect (31.2 ms) in control. The Ca(2+) transient decay rate was similarly accelerated by Iso in Tg and nontransgenic (Ntg) myocytes. Gene transfer of cTnI S23/24D to myocytes in primary culture showed comparable findings. Gene transfer of cTnI with both serines 23/24 converted to alanines (cTnI S23/24A), or gene transfer of slow skeletal TnI, both of which lack PKA phosphorylation sites, significantly blunted Iso-mediated enhanced relaxation compared with controls. Gene transfer of wild-type cTnI had no effect on relaxation. These findings support a key role of cTnI in myocyte relaxation and highlight a direct contribution of the myofilaments in modulating the dynamics of myocardial performance.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center