Send to

Choose Destination
See comment in PubMed Commons below
Can J Physiol Pharmacol. 2007 Mar-Apr;85(3-4):341-8.

Hydrogen peroxide causes cardiac dysfunction independent from its effects on matrix metalloproteinase-2 activation.

Author information

Department of Pediatrics, Cardiovascular Research Group, 4-62 Heritage Medical Research Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada.


Hydrogen peroxide (H2O2) causes cardiac dysfunction through multiple mechanisms. As oxidative stress can activate matrix metalloproteinases (MMPs) and, in particular, MMP-2 activity is associated with oxidative stress injury in the heart, we hypothesized that MMP-2 activation by H2O2 in isolated rat hearts contributes to cardiac dysfunction in this model. Isolated working rat hearts were perfused at 37 degrees C with a recirculating Krebs-Henseleit buffer+/-5 mmol/L pyruvate, known to protect hearts from oxidative stress. H2O2 (300 micromol/L) was added as a single bolus after 20 min of equilibration, and cardiac function was monitored for 60 min. MMPs activities in both the heart and perfusate samples were assessed by gelatin zymography. Tissue high energy phosphates were analysed by HPLC. The actions of 2 MMP inhibitors, doxycycline (75 micromol/L) or Ro 31-9790 (3 micromol/L), were also assessed. H2O2 at 300 micromol/L produced a rapid decline in cardiac mechanical function, which was maximal at 5 min. A peak in perfusate MMP-2 activity was also observed at 5 min. The deleterious effect of H2O2 on cardiac function was abolished by pyruvate but not by the MMPs inhibitors. This study suggests that in intact hearts, H2O2 induces contractile dysfunction independent of MMPs activation.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Support Center