Format

Send to

Choose Destination
Mol Microbiol. 2007 Aug;65(3):671-83. Epub 2007 Jul 3.

Mg(2+) signalling defines the group A streptococcal CsrRS (CovRS) regulon.

Author information

1
Division of Infectious Diseases, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA.

Abstract

CsrRS (or CovRS) is a two-component system implicated in the control of multiple virulence determinants in the important human pathogen, group A Streptococcus (GAS). Earlier studies suggested that extracellular Mg(2+) signalled through the presumed sensor histidine kinase, CsrS. We now confirm those findings, as complementation of a csrS mutant restored Mg(2+)-dependent gene regulation. Moreover, we present strong evidence that Mg(2+) signals through CsrS to regulate an extensive and previously undefined repertoire of GAS genes. The effect of Mg(2+) on regulation of global gene expression was evaluated using genomic microarrays in an M-type 3 strain of GAS and in an isogenic csrS mutant. Unexpectedly, of the 72 genes identified in the Mg(2+)-stimulated CsrRS regulon, 42 were absent from the CsrR regulon (the latter being defined by comparison of wild-type and CsrR mutant transcriptomes at low Mg(2+)). We observed CsrS-dependent regulation of 72 of the 73 genes whose expression changed in response to elevated extracellular Mg(2+) in wild-type bacteria, a result that identifies CsrS as the principal, if not exclusive, sensor for extracellular Mg(2+) in GAS. To our knowledge, this study is the first to characterize global gene regulation by a GAS two-component system in response to a specific environmental stimulus.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center