Format

Send to

Choose Destination
See comment in PubMed Commons below
J Agric Food Chem. 2007 Jul 25;55(15):6032-8. Epub 2007 Jul 4.

Insoluble fraction of buckwheat (Fagopyrum esculentum Moench) protein possessing cholesterol-binding properties that reduce micelle cholesterol solubility and uptake by Caco-2 cells.

Author information

  • 1Department of Animal Science, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, USA.

Abstract

Buckwheat (Fagopyrum esculentum Moench) protein (BWP) exhibits hypocholesterolemic activity in several animal models by increasing fecal excretion of neutral and acidic sterols. In the current study, the ability of BWP to disrupt micelle cholesterol solubility by sequestration of cholesterol was investigated. When BWP (0.2%) was incubated with cholesterol and micelle lipid components prior to micelle formation, cholesterol solubility was reduced 40%. In contrast, cholesterol solubility was not decreased when BWP (0.2%) was incubated after micelle formation and incorporation of soluble cholesterol. Buckwheat flour, from which BWP was derived, had no significant effect on cholesterol solubility. Cholesterol uptake in Caco-2 cells from micelles made in the presence of BWP (0.2%) was reduced by 47, 36, 35, and 33% when compared with buckwheat flour, bovine serum albumin, casein, and gelatin, respectively. Reduction in cholesterol uptake in Caco-2 cells was dose-dependent, with maximum reductions at 0.1-0.4% BWP. In cholesterol-binding experiments, 83% of the cholesterol was associated with an insoluble BWP fraction, indicating strong cholesterol-binding capacity that disrupts solubility and uptake by Caco-2 cells.

PMID:
17608501
DOI:
10.1021/jf0709496
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center