Format

Send to

Choose Destination
See comment in PubMed Commons below
Biomaterials. 2007 Oct;28(29):4192-9. Epub 2007 Jun 29.

Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces.

Author information

1
Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA.

Abstract

In this work, we report a study of long-chain zwitterionic poly(sulfobetaine methacrylate) (pSBMA) surfaces grafted via atom transfer radical polymerization (ATRP) for their resistance to bacterial adhesion and biofilm formation. Previously, we demonstrated that p(SBMA) is highly resistant to nonspecific protein adsorption. Poly(oligo(ethylene glycol) methyl ether methacrylate) (pOEGMA) grafted surfaces were also studied for comparison. Furthermore, we quantify how surface grafting methods will affect the long-term biological performance of the surface coatings. Thus, self-assembled monolayers (SAMs) of alkanethiols with shorter-chain oligo(ethylene glycol) (OEG) and mixed SO3-/N+(CH3)3 terminated groups were prepared on gold surfaces. The short-term adhesion (3 h) and the long-term accumulation (24 or 48 h) of two bacterial species (Gram-positive Staphylococcus epidermidis and Gram-negative Pseudomonas aeruginosa) on these surfaces were studied using a laminar flow chamber. Methyl-terminated (CH3) SAM on gold and a bare glass were chosen as references. p(SBMA) reduced short-term adhesion of S. epidermidis and P. aeruginosa relative to glass by 92% and 96%, respectively. For long-term biofilm formation, qualitative images showed that p(SBMA) dramatically reduced biofilm formation of S. epidermidis and P. aeruginosa as compared to glass.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center