Send to

Choose Destination
Gene. 2007 Oct 1;400(1-2):16-24. Epub 2007 Jun 5.

Identification and characterization of sea squirt telomerase reverse transcriptase.

Author information

Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA.


Telomerase is essential for maintaining telomere length and chromosome stability in most eukaryotic organisms. The telomerase ribonucleoprotein complex consists of two essential components, the catalytic telomerase reverse transcriptase protein (TERT) and the intrinsic telomerase RNA. The sea squirts, as urochordates, occupy a key position in the phylogenetic tree of the chordates: they diverged from the other chordates just before the lineage of vertebrates, and thus provide special insight into the origin and evolution of vertebrate genes. Here, we report the cloning and characterization of TERT genes from two sea squirts, Ciona intestinalis and Ciona savignyi. The C. intestinalis TERT (CinTERT) gene encodes 907 amino acids and consists of 17 exons, which are similar to vertebrate TERT genes. The C. savignyi TERT (CsaTERT) gene encodes 843 amino acids, but surprisingly does not contain any introns. Both Ciona TERTs contain all of the reverse transcriptase (RT) motifs (1, 2, A, B, C, D, and E) that are typically present in telomerase and viral RTs. Interestingly, the alignment of Ciona and vertebrate TERT sequences reveals a previously unknown motif, named motif 3, located between motifs 2 and A. The Ciona TERT gene is expressed in all tissues analyzed except the brain and heart. This is the first report of the TERT gene in invertebrate chordates.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center